
Chapter 6 – Number and Proof
Solutions to Exercise 6A

1 a As m and n are even, m = 2p and
n = 2q where p, q ∈ Z. Therefore,

m + n = 2p + 2q

= 2(p + q),

is an even number.

b As m and n are even, m = 2p and
n = 2q where p, q ∈ Z. Therefore,

mn = (2p)(2q)

= 4pq

= 2(2pq),

is an even number.

2 As m and n are odd, m = 2p + 1 and
n = 2q + 1 where p, q ∈ Z. Therefore,

m + n = (2p + 1) + (2q + 1)

= 2p + 2q + 2

= 2(p + q + 1),

is an even number.

3 As m is even and n is odd, m = 2p and
n = 2q + 1 where p, q ∈ Z. Therefore,

mn = 2p(2q + 1)

= 2(2pq + p),

is an even number.

4 a If m is divisible by 3 and n is divis-
ible by 7, then m = 3p and n = 7q
where p, q ∈ Z. Therefore,

mn = (3p)(7q)

= 21pq,

is divisible by 21.

b If m is divisible by 3 and n is divis-
ible by 7, then m = 3p and n = 7q
where p, q ∈ Z. Therefore,

m2n = (3p)2(7q)

= 9p2(7q)

= 63p2q

is divisible by 63.

5 If m and n are perfect squares then
m = a2 and n = b2 for some a, b ∈ Z.
Therefore,

mn = (a2)(b2) = (ab)2,

is also a perfect square.

6 Expanding both brackets gives,

(m + n)2 − (m − n)2

=m2 + 2mn + n2 − (m2 − 2mn + n2)

=m2 + 2mn + n2 − m2 + 2mn − n2

=4mn,

which is divisible by 4.

7 (Method 1) If n is even then n2 is even
and 6n is even. Therefore the expression
is of the form

even − even + odd = odd.

(Method 2) If n is even then n = 2k
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where k ∈ Z. Then

n2 − 6n + 5 = (2k)2 − 6(2k) + 5

= 4k2 − 12k + 5

= 4k2 − 12k + 4 + 1

= 2(2k2 − 6k + 2) + 1, =

is odd.

8 (Method 1) If n is odd then n2 is odd and
8n is even. Therefore the expression is
of the form

odd + even + odd = even.

(Method 2) If n is odd then n = 2k + 1
where k ∈ Z. Then

n2 + 8n + 5 = (2k + 1)2 + 8(2k + 1) + 3

= 4k2 + 4k + 1 + 16k + 8 + 3

= 4k2 + 20k + 12

= 2(2k2 + 10k + 6),

is even.

9 First suppose n is even. Then 5n2 and 3n
are both even. Therefore the expression
is of the form

even + even + odd = odd.

Now suppose n is odd. Then 5n2 and 3n
are both odd. Therefore the expression
is of the form

odd + odd + odd = odd.

10 Firstly, if x > y then x − y > 0. Secondly,
since x and y are positive, x + y > 0.

Therefore,

x4 − y4

=(x2 − y2)(x2 + y2)

=(x − y)(x + y)(x2 + y2)

=

positive︷ ︸︸ ︷
(x − y)

positive︷ ︸︸ ︷
(x + y)

positive︷    ︸︸    ︷
(x2 + y2)

>0.

Therefore, x4 > y4.

11 We have,

x2 + y2 − 2xy

=x2 − 2xy + y2

=(x − y)2

≥2xy.

Therefore, x2 + y2 ≥ 2xy.

12 a We prove that Alice is a knave, and
Bob is a knight.

Suppose Alice is a knight
⇒ Alice is telling the truth
⇒ Alice and Bob are both knaves
⇒ Alice is a knight and a knave

This is impossible.
⇒ Alice is a knave
⇒ Alice is not telling the truth
⇒ Alice and Bob are not both knaves
⇒ Bob is a knight
⇒ Alice is a knave, and Bob is a knight

b We prove that Alice is a knave, and
Bob is a knight.
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Suppose Alice is a knight
⇒ Alice is telling the truth
⇒ They are both of the same kind
⇒ Bob is a knight
⇒ Bob is lying
⇒ Bob is a knave
⇒ Bob is a knight and a knave.

This is impossible.
⇒ Alice is a knave
⇒ Alice is not telling the truth
⇒ Alice and Bob are of a different kind
⇒ Bob is a knight
⇒ Alice is a knave, and Bob is a knight

c We will prove that Alice
is a knight, and Bob is a knave.

Suppose Alice is a knave
⇒ Alice is not telling the truth
⇒ Bob is a knight
⇒ Bob is telling the truth
⇒ Neither of them are knaves
⇒ Both of them are knights
⇒ Alice is a knight and a knave

This is impossible.
⇒ Alice is a knight
⇒ Alice is telling the truth
⇒ Bob is a knave
⇒ Bob is lying
⇒ At least one of them is a knave
⇒ Bob is a knave
⇒ Alice is a knight, and Bob is a knave.

13 a In the diagram below, there are 11
yellow tiles. We can also count
the yellow tiles by subtracting the
number of red tiles, 52, from the
total number of tiles, 62. Therefore
11 = 62 − 52.

b Every odd number is of the form
2k + 1 for some k ∈ Z. Moreover,

(k + 1)2 − k2 = k2 + 2k + 1 − k2

= 2k + 1,

so that every odd number can be
written as the difference of two
squares.

c Since 101 = 2 × 50 + 1, we have,

512 − 502 = 101.

14 a Since
9

10
=

99
110

and
10
11

=
100
110
,

it is clear that
10
11
>

9
10
.

b We have,
n

n + 1
−

n − 1
n

=
n2

n(n + 1)
−

n(n − 1)
n(n + 1)

=
n2 − n(n − 1)

n(n + 1)

=
n2 − n2 + n

n(n + 1)

=
1

n(n + 1)

>0

since n(n + 1) > 0. Therefore,
n

n + 1
>

n − 1
n
.
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15 a We have,

1
10
−

1
11

=
11
110
−

10
110

=
1

110

<
1

100
,

since 110 > 100.

b We have,

1
n
−

1
n + 1

=
n + 1

n(n + 1)
−

n
n(n + 1)

=
n + 1 − n
n(n + 1)

=
1

n(n + 1)
,

=
1

n2 + n
,

<
1
n2 ,

since n2 + n > n2.

16 We have,

a2 + b2

2
−

(
a + b

2

)2

=
a2 + b2

2
−

(a + b)2

4

=
2a2 + 2b2

4
−

a2 + 2ab + b2

4

=
2a2 + 2b2 − a2 − 2ab − b2

4

=
a2 − 2ab + b2

4

=
(a − b)2

4
≥0.

17 a Expanding gives,

(x − y)(x2 + xy + y2)

=x3 + x2y + xy2 − x2y − xy2 − y3

=x3 − y3,

which is the difference of two cubes.

b Completing the square by treating y
as a constant gives,

x2 + yx + y2

=x2 + yx +
y2

4
−

y2

4
+ y2

=

(
x2 + yx +

y2

4

)
+

3y2

4

=

(
x +

y
2

)2
+

3y2

4
≥0

c Firstly, if x ≥ y then x − y ≥ 0.
Therefore,

x3 − y3

=

≥0︷ ︸︸ ︷
(x − y)

≥0︷           ︸︸           ︷
(x2 + xy + y2)

≥0.

Therefore, x3 > y3.

18 a Let D be the distance to and from
work. The time taken to get to work
is D/12 and the time taken to get
home from work is D/24. The total
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distance is 2D and the total time is
D
12

+
D
24

=
2D
24

+
D
24

=
3D
24

=
D
8

The average speed will then be

distance ÷ time

=2D ÷
D
8

=2D ×
8
D

=16 km/hour.

b Let D be the distance to and from
work. The time taken to get to work
is D/a and the time taken to get home
from work is D/b. The total distance
is 2D and the total time is

D
a

+
D
b

=
bD
ab

+
aD
ab

=
aD + bD

ab

=
(a + b)D

ab

The average speed will then be

distance ÷ time

=2D ÷
(a + b)D

ab

=2D ×
ab

(a + b)D

=
2ab

a + b
km/hour.

c We first note that a + b > 0. Secondly,

a + b
2
−

2ab
a + b

=
(a + b)2

2(a + b)
−

4ab
2(a + b)

=
(a + b)2 − 4ab

2(a + b)

=
a2 + 2ab + b2 − 4ab

2(a + b)

=
a2 − 2ab + b2

2(a + b)

=
(a − b)2

2(a + b)

≥0

since (a − b) ≥ 0 and a + b > 0.
Therefore,

a + b
2
≥

2ab
a + b

.
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Solutions to Exercise 6B

1 a P : 1 > 0 (true)
not P : 1 ≤ 0 (false)

b P : 4 is divisible by 8 (false)
not P : 4 is not divisible by 8 (true)

c P : Each pair of primes has an even
sum (false)
not P : Some pair of primes does not
have an even sum (true)

d P : Some rectangle has 4 sides of
equal length (true)
not P : No rectangle has 4 sides of
equal length (false)

2 a P : 14 is divisible by 7 and 2 (true)
not P : 14 is not divisible by 7 or 14
is not divisible by 2 (false)

b P : 12 is divisible by 3 or 4 (true)
not P : 12 is not divisible by 4 and 12
is not divisible by 3 (false)

c P : 15 is divisible by 3 and 6 (false)
not P : 15 is not divisible by 3 or 15
is not divisible by 6 (true)

d P : 10 is divisible by 2 or 5 (true)
not P : 10 is not divisible by 2 or 10
is not divisible by 5 (false)

3 We will prove that Alice is
a knave, and Bob is a knave.

Suppose Alice is a knight
⇒ Alice is telling the truth
⇒ Alice is a knave
⇒ Alice is a knight and a knave

This is impossible.
⇒ Alice is a knave
⇒ Alice is not telling the truth
⇒ Alice is a knight OR Bob is a knave
⇒ Bob is a knave, as Alice is not a knight
⇒ Alice and Bob are both knaves.

4 a If there are no clouds in the sky, then
it is not raining.

b If you are not happy, then you are not
smiling.

c If 2x , 2, then x , 1.

d If x5 ≤ y5, then x ≤ y.

e Option 1: If n is not odd, then n2 is
not odd.
Option 2: If n is even, then n2 is even.

f Option 1: If mn is not odd, then n is
not odd or m is not odd.
Option 2: If If mn is even, then n is
even or m is even.

g Option 1: If n and n are not both even
or both odd, then m + n is not even.
Option 2: If n and n are not both even
or both odd, then m + n is odd.

5 a Contrapositive: If n is even then
3n + 5 is odd.
Proof: Suppose n is even. Then
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n = 2k, for some k ∈ Z. Therefore,

3n + 5 = 3(2k) + 5

= 6k + 5

= 6k + 4 + 1

= 2(3k + 2) + 1

is odd.

b Contrapositive: If n is even, then n2 is
even.
Proof: Suppose n is even. Then
n = 2k, for some k ∈ Z. Therefore,

n2 = (2k)2

= 4k2

= 2(2k2)

is even.

c Contrapositive: If n is even, then
n2 − 8n + 3 is odd.
Proof: Suppose n is even. Then
n = 2k, for some k ∈ Z. Therefore,

n2 − 8n + 3 = (2k)2 − 8(2k) + 3

= 4k2 − 16k + 3

= 4k2 − 16k + 2 + 1

= 2(2k2 − 8k + 1) + 1

is odd.

d Contrapositive: If n is divisible by 3,
then n2 is divisible by 3.
Proof: Suppose n is divisible by
3. Then n = 3k, for some k ∈ Z.
Therefore,

n2 = (3k)2

= 9k2

= 3(3k2)

is divisible by 3.

e Contrapositive: If n is even, then
n3 + 1 is odd.
Proof: Suppose n is even. Then
n = 2k, for some k ∈ Z. Therefore,

n3 + 1 = (2k)3 + 1

= 8k3 + 1

= 2(4k3) + 1

is odd.

f Contrapositive: If m or n are divisible
by 3, then mn is divisible by 3.
Proof: If m or n is divisible by 3 then
we can assume that m is divisible
by 3. Then, m = 3k, for some k ∈ Z.
Therefore,

mn = (3k)n

= 3(kn)

is divisible by 3.

g Contrapositive: If m = n, then m + n
is even.
Proof: Suppose that m = n. Then

m + n = n + n

= 2n

is even.

6 a Contrapositive: If x ≥ 0, then
x2 + 3x ≥ 0.
Proof: Suppose that x ≥ 0. Then,

x2 + 3x = x(x + 3) ≥ 0,

since x ≥ 0 and x + 3 ≥ 0.

b Contrapositive: If x ≤ −1, then
x3 − x ≤ 0.
Proof: Suppose that x ≤ −1. Then,

x3 − x = x2(x − 1) ≤ 0,

since x2 ≥ 0 and x − 1 ≥ 0.
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c Contrapositive: If x < 1 and y < 1,
then x + y < 2.
Proof: If x < 1 and y < 1 then,

x + y < 1 + 1 = 2,

as required.

d Contrapositive: If x < 3 and y < 2,
then 2x + 3y < 12.
Proof: If x < 3 and y < 2 then,

2x + 3y < 2 × 3 + 3 × 2 = 6 + 6 = 12,

as required.

7 a Contrapositive: If m is odd or n is
odd, then mn is odd or m + n is odd.

b Proof:
(Case 1) Suppose m is odd and n is
odd. Then clearly mn is odd.
(Case 2) Suppose m is odd and n is
even. Then clearly m + n will be odd.
It is likewise, if m is even and n is
odd.

8 a We rationalise the right hand side to

give,
x − y
√

x +
√

y

=
x − y
√

x +
√

y

√
x −
√

y
√

x −
√

y

=
(x − y)

(√
x −
√

y
)(√

x +
√

y
) (√

x −
√

y
)

=
(x − y)

(√
x −
√

y
)

(x − y)

=
√

x −
√

y.

b If x > y then x − y > 0. Then, using
the above equality, we see that,
√

x −
√

y =
x − y
√

x +
√

y
> 0,

since the numerator and denomi-
nator are both positive. Therefore,
√

x >
√

y.

c Contrapositive: If
√

x ≤
√

y, then
x ≤ y.
Proof: If

√
x ≤
√

y then, since both
sides are positive, we can square both
sides to give x ≤ y.
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Solutions to Exercise 6C

1 If all three angles are less than 60◦,
then the sum of interior angles of the
triangle would be less than 180◦. This
is a contradiction as the sum of interior
angles is exactly 180◦.

2 Suppose there is some least positive
rational number

p
q

. Then since,

p
2q
<

p
q
,

there is some lesser positive rational
number, which is a contradiction.
Therefore, there is no least positive
rational number.

3 Suppose that
√

p is an integer. Then
√

p = n,

for some n ∈ Z. Squaring both sides
gives

p = n2.

Since n , 1, this means that p has
three factors: 1, n and n2. This is a
contradiction since every prime number
has exactly two factors.

4 Suppose that x is rational so that x =
p
q

where p, q ∈ Z. Then,

3x = 2

⇒ 3
p
q = 2

⇒

(
3

p
q

)q

= 2q

⇒ 3p = 2q

The left hand side of this equation is
odd, and the right hand side is even.

This gives a contradiction, so x is not
rational.

5 Suppose that log2 5 is rational so that
log2 5 =

p
q

where p, q ∈ Z. Then,

2
p
q = 5

⇒ 2
p
q = 5

⇒

(
2

p
q

)q

= 5q

⇒ 2p = 5q

The left hand side of this equation is
odd, and the right hand side is even.
This gives a contradiction, so x is not
rational.

6 Suppose the contrary, so that
√

x is
rational. Then

√
x =

p
q
,

where p, q ∈ Z. Then, squaring both
sides of the equation gives,

x =
p2

q2 ,

where p2, q2 ∈ Z. Therefore, x is
rational, which is a contradiction.

7 Suppose, on the contrary that a + b is
rational. Then

b =

rational︷ ︸︸ ︷
(a + b)−

rational︷︸︸︷
b.

Therefore, b is the difference of two
rational numbers, which is rational. This
is a contradiction.
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8 Suppose b and c are both natural
numbers. Then

c2 − b2 = 4

(c − b)(c + b) = 4.

The only factors of 4 are 1, 2 and 4. And
since c + b > c − b,

c − b = 1 and c + b = 4.

Adding these two equations gives 2c = 5

so that c =
2
5

, which is not a whole
number.

9 Suppose that there are two different
solutions, x1 and x2. Then,

ax1 + b = c and ax2 + b = c.

Equating these two equations gives,

ax1 + b = ax2 + b

ax1 = ax2

x1 = x2, (since a , 0)

which is a contradiction since the two
solutions were assumed to be different.

10 a Every prime p > 2 is odd since if it
were even then p would be divisible
by 2.

b Suppose there are two primes p and p
such that p + q = 1001. Then since
the sum of two odd numbers is even,
one of the primes must be 2. Assume
p = 2 so that q = 999. Since 999 is
not prime, this gives a contradiction.

11 a Suppose that

42a + 7b = 1.

Then
7(6a + b) = 1.

This implies that 1 is divisible by 7,
which is a contradiction since the
only factor of 1 is 1.

b Suppose that

15a + 21b = 2.

Then

3(5a + 7b) = 2.

This implies that 2 is divisible by 3,
which is a contradiction since the
only factors of 2 are 1 and 2.

12 a Contrapositive: If n is not divisible by
3, then n2 is not divisible by 3.
Proof: If n is not divisible by 3 then
either n = 3k + 1 or n = 3k + 2.
(Case 1) If n = 3k + 1 then,

n2 = (3k + 1)2

= 9k2 + 6k + 1

= 3(3k2 + 2k) + 1

is not divisible by 3.
(Case 2) If n = 3k + 2 then,

n2 = (3k + 2)2

= 9k2 + 12k + 4

= 9k2 + 12k + 3 + 1

= 3(3k2 + 4k + 1) + 1

is not divisible by 3.

b This will be a proof by contradic-
tion. Suppose

√
3 is rational so

that
√

3 =
p
q

where p, q ∈ Z. We

can assume that p and q have no
common factors (or else they could
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be cancelled). Then,

p2 = 3q2 (1)

⇒ p2 is divisible by 3

⇒ p is divisible by 3

⇒ p = 3k for some k ∈ N

⇒ (3k)2 = 3q2(substitituting into (1))

⇒ 3q2 = 9k2

⇒ q2 = 3k2

⇒ q2 is divisible by 3

⇒ q is divisible by 3.

So p and q are both divisible by 3,
which contradicts the fact that they
have no factors in common.

13 a Contrapositive: If n is odd, then n3 is
odd.
Proof: If n is odd then n = 2k + 1 for
some k ∈ Z. Therefore,

n3 = (2k + 1)3

= 8k3 + 12k2 + 6k + 1

= 2(4k3 + 6k2 + 3k) + 1

is odd. Otherwise, we can simply
quote the fact that the product of 3
odd numbers will be odd.

b This will be a proof by contradic-
tion. Suppose 3√2 is rational so
that 3√2 =

p
q

where p, q ∈ Z. We

can assume that p and q have no
common factors (or else they could

be cancelled). Then,

p3 = 2q3 (1)

⇒ p3 is divisible by 2

⇒ p is divisible by 2

⇒ p = 2k for some k ∈ N

⇒ (2k)3 = 2q3(substitituting into (1))

⇒ 2q3 = 8k3

⇒ q3 = 4k3

⇒ q3 is divisible by 2

⇒ q is divisible by 2.

So p and q are both divisible by 2,
which contradicts the fact that they
have no factors in common.

14 This will be a proof by contradiction, so
we suppose there is some a, b ∈ Z such
that

a2 − 4b − 2 = 0

⇒ a2 = 4b + 2

⇒ a2 = 2(2b + 1) (1)

which means that a2 is even. However,
this implies that a is even, so that
a = 2k, for some k ∈ Z. Substituting this
into equation (1) gives,

(2k)2 = 2(2b + 1)

4k2 = 2(2b + 1)

2k2 = 2b + 1

2k2 − 2b = 1

2(k2 − b) = 1.

This implies that 1 is divisible by 2,
which is a contradiction since the only
factor of 1 is 1.

15 a Suppose on the contrary, that a >
√

n
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and b >
√

n. Then

ab >
√

n
√

n = n,

which is a contradiction since ab = n.

b If 97 were not prime then we could
write 97 = ab where 1 < a < b < n.
By the previous question, we know
that

a ≤
√

97 <
√

100 = 10.

Therefore a is one of

{2, 3, 4, 5, 6, 7, 8, 9}.

However 97 is not divisible by
any of these numbers, which is a
contradiction. Therefore, 97 is a
prime number.

16 a Let m = 4n + r where r = 0, 1, 2, 3.
(r = 0) We have,

m2 = (4n)2

= 16n2

= 4(4n2)

is divisible by 4.
(r = 1) We have,

m2 = (4n + 1)2

= 16n2 + 8n + 1

= 4(4n2 + 2n) + 1

has a remainder of 1.
(r = 2) We have,

m2 = (4n + 2)2

= 16n2 + 16n + 4

= 4(4n2 + 4n + 1)

is divisible by 4.

(r = 3) We have,

m2 = (4n + 3)2

= 16n2 + 24n + 9

= 16n2 + 24n + 8 + 1

= 4(4n2 + 6n + 2) + 1

has a remainder of 1.

Therefore, the square of every integer
is divisible by 4 or leaves a remainder
of 1.

b Suppose the contrary, so that both
a and b are odd. Then a = 2k + 1
and b = 2m + 1 for some k,m ∈ Z.
Therefore,

c2 = a2 + b2

= (2k + 1)2 + (2m + 1)2

= 4k2 + 4k + 1 + 4m2 = 4m + 1

= 4(k2 + m2 + k + m) + 2.

This means that c2 leaves a remainder
of 2 when divided by 4, which is a
contradiction.

17 a Suppose by way of contradiction
either a , c or b , d. Then clearly
both a , c and b , d. Therefore,

a + b
√

2 = c + d
√

2

(b − d)
√

2 = c − a
√

2 =
c − a
b − d

Since
c − a
b − d

∈ Q, this contradicts the

irrationality of
√

2.
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b Squaring both sides gives,

3 + 2
√

2 =
(
c + d

√
2
)2

3 + 2
√

2 = c2 + 2cd
√

2 + 2d2

3 + 2
√

2 = c2 + 2d2 + 2cd
√

2

Therefore

c2 + 2d2 = 3 (1)

cd = 1 (2)

Since c and d are integers, this
implies that c = d = 1.

18 There are many ways to prove this
result. We will take the most elementary
approach (but not the most elegant).
Suppose that

ax2 + bx + c = 0 (1)

has a rational solution, x =
p
q

. We can

assume that p and q have no factors
in common (or else we could cancel).

Equation (1) then becomes

ax2 + bx + c = 0

a
(

p
q

)2

+ b
(

p
q

)
+ c = 0

ap2 + bpq + cq2 = 0 (2)

Since p and q cannot both be even, we
need only consider three cases.
(Case 1) If p is odd and q is odd then
equation (2) is of the form

odd + odd + odd = odd = 0.

This is not possible since 0 is even.
(Case 2) If p is odd and q is even then
equation (2) is of the form

odd + even + even = odd = 0.

This is not possible since 0 is even.
(Case 3) If p is even and q is odd then
equation (2) is of the form

even + even + odd = odd = 0.

This is not possible since 0 is even.
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Solutions to Exercise 6D

1 a Converse: If x = 1, then 2x + 3 = 5.
Proof: If x = 1 then

2x + 3 = 2 × 1 + 3 = 5.

b Converse: If n − 3 is even, then n is
odd.
Proof: If n − 3 is even then n − 3 = 2k
for some k ∈ Z. Therefore,

n = 2k + 3 = 2k + 2 + 1 = 2(k + 1) + 1

is odd.

c Converse: If m is odd, then
m2 + 2m + 1 is even.
Proof 1: If m is odd then the
expression m2 + 2m + 1 is of the form,

odd + even + odd = even.

Proof 2: If m is odd then m = 2k + 1
for some k ∈ Z. Therefore,

m2 + 2m + 1

= (2k + 1)2 + 2(k + 1) + 1

= 4k2 + 4k + 1 + 2k + 2 + 1

= 4k2 + 6k + 3

= 4k2 + 6k + 2 + 1

= 2(2k2 + 3k + 1) + 1,

is clearly odd.

d Converse: If n is divisible by 5, then
n2 is divisible by 5.
Proof: If n is divisible by 5 then
n = 5k for some k ∈ Z. Therefore,

n2 = (5k)2 = 25k2 = 5(5k2),

which is divisible by 5.

2 a Converse: If mn is a multiple of 4,
then m and n are even.

b This statement is not true. For
instance, 4 × 1 is a multiple of 4, and
yet 1 is clearly not even.

3 a These statements are not equivalent.
(P⇒ Q) If Vivian is in China then
she is in Asia, since Asia is a country
in China.
(Q; P) If Vivian is in Asia, she
is not necessarily in China. For
example, she could be in Japan.

b These statements are equivalent.
(P⇒ Q) If 2x = 4, then dividing both
sides by 2 gives x = 2.
(Q⇒ P) If x = 2, then multiplying
both sides by 2 gives 2x = 4.

c These statements are not equivalent.
(P⇒ Q) If x > 0 and y > 0 then
xy > 0 since the product of two
positive numbers is positive.
(Q; P) If xy > 0, then it may not
be true that x > 0 and y > 0. For
example, (−1) × (−1) > 0, however
−1 < 0.

d These statements are equivalent.
(P⇒ Q) If m or n are even then mn
will be even.
(Q⇒ P) If mn is even then either
m or n are even since otherwise the
product of two odds numbers would
give an odd number.

4 (⇒) If n + 1 is odd then, n + 1 = 2k + 1,
where k ∈ Z. Therefore,
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n + 2 = 2k + 2

= 2(k + 1),

so that n + 2 is even.
(⇐) If n + 2 is even then, n + 2 = 2k,
where k ∈ Z. Therefore,

n + 1 = 2k − 1

= 2k − 2 + 1

= 2(k − 1) + 1

so that n + 1 is odd.

5 (⇒) Suppose that n2 − 4 is prime. Since

n2 − 4 = (n − 2)(n + 2)

expresses n2 − 4 as the product of two
numbers, either n − 2 = 1 or n + 2 = 1.
Therefore, n = 3 or n = −1. However, n
must be positive, so n = 3.
(⇐) If n = 3 then

n2 − 4 = 32 − 4 = 5

is prime.

6 (⇒) We prove this statement in the
contrapositive. Suppose n is not even.
Then n = 2k + 1 where k ∈ Z. Therefore,

n3 = (2k + 1)3

= 8k3 + 12k2 + 6k + 1

= 2(4k4 + 6k2 + 3k) + 1

is odd.

(⇐) If n is even then n = 2k. Therefore,

n3 = (2k)3

= 8k3

= 2(4k3)

is even.

7 (⇒) Suppose that n is odd. Then
n = 2m + 1, for some m ∈ Z. Now either
m is even or m is odd. If m is even, then
m = 2k so that

n = 2m + 1

= 2(2k) + 1

= 4k + 1.

as required. If m is odd then m = 2q + 1
so that

n = 2m + 1

= 2(2q + 1) + 1

= 4q + 3

= 4q + 4 − 1

= 4(q + 1) − 1

= 4k − 1, where k = q + 1,

as required.
(⇐) If n = 4k ± 1 then either n = 4k + 1
or n = 4k − 1. If n = 4k + 1, then

n = 4k + 1

= 2(2k) + 1

= 2m + 1, where m = 2k,

is odd, as required. Likewise, if
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n = 4k − 1, then

n = 4k − 1

= 4k − 2 + 1

= 2(2k − 1) + 1

= 2m + 1, where m = 2k − 1,

is odd, as required.

8 (⇒) Suppose that,

(x + y)2 = x2 + y2

x2 + 2xy + y2 = x2 + y2

2xy = 0

xy = 0

Therefore, x = 0 or y = 0.
(⇐) Suppose that x = 0 or y = 0. We
can assume that x = 0. Then

(x + y)2 = (0 + y)2

= y2

= 02 + y2

= x2 + y2,

as required.

9 a Expanding gives

(m − n)(m2 + mn + n2)

=m3 + m2n + mn2 − m2n − mn2 − n3

=m3 − n3.

b (⇐) We will prove this in the
contrapositive. Suppose that m − n
were odd. Then either m is odd and n
is even or visa versa.
Case 1 - If m is odd and n is even
The expression m2 + mn + n2 is of the
form,

odd + even + even = odd.

Case 2 - m is even and n is odd
The expression m2 + mn + n2 is of the
form,

even + even + odd = odd.

In both instances, the expression
m2 + mn + n2 is odd. Therefore,

m3 − n3 = (m − n)(m2 + mn + n2)

is the product of two odd numbers,
and will therefore be odd.

10 We first note that any integer n can be
written in the form n = 100x + y where
x, y ∈ Z and y is the number formed
by the last two digits. For example,
1234 = 100 × 12 + 34. Then

n is divisible by 4

⇔n = 100x + y = 4k, for some k ∈ Z

⇔y = 4k − 100x

⇔y = 4(k − 25x)

⇔y is divisible by 4.
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Solutions to Exercise 6E

1 a For all

b There exists

c For all

d For all

e There exists

f There exists

g For all

2 a True

b False

c True

d False

e False

3 a There exists a natural number n such
that 2n2 − 4n + 31 is not prime

b There exists x ∈ R such that x2 ≤ x

c For all x ∈ R, 2 + x2 , 1 − x2

d There exists x, y ∈ R such that
(x + y)2 , x2 + y2

e For all x, y ∈ R, x ≥ y implies x2 ≥ y2

(Intent)

4 a If we let n = 31 it is clear that

2n2 − 4n + 31 = 2 × 312 − 4 × 31 + 31

is divisible by 31 and so cannot be

prime.

b Let x = 1 and y = −1 so that

(x + y)2 = (1 + (−1))2 = 0,

while,

x2 + y2 = 12 + (−1)2 = 1 + 1 = 2,

c If x =
1
2

, then,

x2 =
1
4
<

1
2

= x.

d If n = 3 then,

n3 − n = 27 − 3 = 24

is even, although 3 is not.

e If m = n = 1 then m + n = 2 while
mn = 1.

f Since 6 divides 2 × 3 = 6 but 6 does
not divide 2 or 3, the statement is
false.

5 a Negation: For all n ∈ N, the number
9n2 − 1 is not a prime number.
Proof: Since

9n2 − 1 = (3n − 1)(3n + 1),

and since each factor is greater than
1, the number 9n2 − 1 is not a prime
number.

b Negation: For all n ∈ N, the number
n2 + 5n + 6 is not a prime number.
Since

n2 + 5n + 6 = (n + 2)(n + 3),

and since each factor is greater than
1, the number 9n2 + 5n + 6 is not a
prime number.
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c Negation: For all x ∈ R, we have
2 + x2 , 1 − x2

Proof: Suppose that 2 + x2 = 1 − x2.
Rearranging the equation gives,

2 + x2 = 1 − x2

2x2 = −1

x2 = −
1
2
,

which is impossible since x2 ≥ 0.

6 a Let a =
√

2 and b =
√

2. Then
clearly each of a and b are irrational,
although ab = 2 is not.

b Let a =
√

2 and b = −
√

2. Then
clearly each of a and b are irrational,
although a + b = 0 is not.

c Let a =
√

2 and b =
√

2. Then
clearly each of a and b are irrational,
although

a
b

= 1 is not.

7 a If a is divisible by 4 then a = 4k for
some k ∈ Z. Therefore,

a2 = (4k)2 = 16k2 = 4(4k2)

is divisible by 4.

b Converse: If a2 is divisible by 4 then
a is divisible by 4.
This is clearly not true, since 22 = 4
is divisible by 4, although 2 is not.

8 a If a − b is divisible by 3 then
a − b = 3k for some k ∈ Z. Therefore,

a2 − b2 = (a − b)(a + b) = 3k(a + b)

is divisible by 3.

b Converse: If a2 − b2 is divisible by 3

then a − b is divisible by 3.
The converse is not true, since
22 − 12 = 3 is divisible by 3, although
2 − 1 = 1 is not.

9 a This statement is not true since for all
a, b ∈ R,

a2 − 2ab + b2 = (a − b)2 ≥ 0 > −1.

b This statement is not true since for all
x ∈ R, we have,

x2 − 4x + 5

=x2 − 4x + 4 − 4 + 5

=(x − 2)2 + 1

≥1

>
3
4
.

10 a The numbers can be paired as
follows:

16 + 9 = 25, 15 + 10 = 25
14 + 11 = 25, 13 + 12 = 25

1 + 8 = 9, 2 + 7 = 9,
4 + 5 = 9, 3 + 6 = 9.

b We now list each number, in descend-
ing order, with each of its potential
pairs.
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12 4
11 5
10 6
9 7
8 1
7 2, 9
6 3, 10
5 4
4 5
3 1, 6
2 7
1 3, 8

Notice that the numbers 2 and 9
must be paired with 7. Therefore,
one cannot pair all numbers in the
required fashion.

11 If we let x = c, then

f (c) = ac2 + bc + c = c(ac + b + 1)

is divisible by c ≥ 2.
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Solutions to Exercise 6F

1 a P(n)

1 + 2 + · · · + n =
n(n + 1)

2
P(1)

If n = 1 then

LHS = 1

and

RHS =
1(1 + 1)

2
= 1.

Therefore P(1) is true.

P(k)

Assume that P(k) is true so that

1 + 2 + · · · + k =
k(k + 1)

2
. (1)

P(k + 1)

LHS of P(k + 1)

=1 + 2 + · · · + k + (k + 1)

=
k(k + 1)

2
+ (k + 1) (by (1))

=
k(k + 1)

2
+

2(k + 1)
2

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

=
(k + 1)((k + 1) + 1)

2
=RHS of P(k + 1)
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

b P(n)

1 + x + x2 + · · · + xn =
1 − xn+1

1 − x
P(1)

If n = 1 then

LHS = 1 + x

and

RHS =
(1 − x2)

1 − x
=

(1 − x)(1 + x)
1 − x

= 1+ x.

Therefore P(1) is true.

P(k)

Assume that P(k) is true so that

1 + x + x2 + · · · + xk =
1 − xk+1

1 − x
. (1)

P(k + 1)

LHS of P(k + 1)

=1 + x + x2 + · · · + xk + xk+1

=
1 − xk+1

1 − x
+ xk+1 (by (1))

=
1 − xk+1

1 − x
+

xk+1(1 − x)
1 − x

=
1 − xk+1 + xk+1(1 − x)

1 − x

=
1 − xk+1 + xk+1 − xk+2

1 − x

=
1 − xk+2

1 − x

=
1 − x(k+1)+1

1 − x
=RHS of P(k + 1)
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

c P(n)

12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
P(1)
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If n = 1 then

LHS = 12 − 1

and

RHS =
1(1 + 1)(2 + 1)

6
= 1.

Therefore P(1) is true.

P(k)

Assume that P(k) is true so that

12 +22 + · · ·+k2 =
k(k + 1)(2k + 1)

6
. (1)

P(k + 1)

LHS of P(k + 1)

=12 + 22 + · · · + k2 + (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2 (by (1))

=
k(k + 1)(2k + 1)

6
+

6(k + 1)2

6

=
k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1)(k(2k + 1) + 6(k + 1))

6

=
(k + 1)(2k2 + k + 6k + 6)

6

=
(k + 1)(2k2 + 7k + 6)

6

=
(k + 1)(k + 2)(2k + 3)

6

=
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
=RHS of P(k + 1)
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

d P(n)

1 ·2+ · · ·+n · (n+1) =
n(n + 1)(n + 2)

3
P(1)

If n = 1 then

LHS = 1 × 2 = 2

and

RHS =
1 × 2 × 3

3
= 2.

Therefore P(1) is true.

P(k)

Assume that P(k) is true so that

1 ·2+ · · ·+k · (k+1) =
k(k + 1)(k + 2)

3
. (1)

P(k + 1)

LHS of P(k + 1)

=1 · 2 + · · · + k · (k + 1) + (k + 1) · (k + 2)

=
k(k + 1)(k + 2)

3
+ (k + 1)(k + 2) (by (1))

=
k(k + 1)(k + 2)

3
+

3(k + 1)(k + 2)
3

=
k(k + 1)(k + 2) + 3(k + 1)(k + 2)

3

=
(k + 1)(k + 2)(k + 3)

3

=
(k + 1)((k + 1) + 1)((k + 1) + 2)

3
=RHS of P(k + 1)
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

e P(n)
1

1 · 3
+ · · · +

1
(2n − 1)(2n + 1)

=

n
2n + 1

P(1)

If n = 1 then

LHS =
1

1 × 3
=

1
3

and

RHS =
1

2 × 1 + 1
=

1
3
.
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Therefore P(1) is true.

P(k)

Assume that P(k) is true so that

1
1 · 3

+ · · ·+
1

(2k − 1)(2k + 1)
=

k
2k + 1

. (1)

P(k + 1)

LHS of P(k + 1)

=
1

1 · 3
+

1
3 · 5

+ · · ·

+
1

(2k − 1)(2k + 1)
+

1
(2k + 1)(2k + 3)

=
k

2k + 1
+

1
(2k + 1)(2k + 3)

(by (1))

=
k(2k + 3)

(2k + 1)(2k + 3)
+

1
(2k + 1)(2k + 3)

=
k(2k + 3) + 1

(2k + 1)(2k + 3)

=
2k2 + 3k + 1

(2k + 1)(2k + 3)

=
(2k + 1)(k + 1)

(2k + 1)(2k + 3)

=
k + 1

(2k + 3)

=
k + 1

(2(k + 1) + 1)

=RHS of P(k + 1)
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

f P(n)(
1 −

1
22

)
· · ·

(
1 −

1
n2

)
=

n + 1
2n

P(2)

If n = 2 then

LHS = 1 −
1
22 =

3
4

and
RHS =

2 + 1
2 × 2

=
3
4
.

Therefore P(2) is true.

P(k)

Assume that P(k) is true so that(
1 −

1
22

)
· · ·

(
1 −

1
k2

)
=

k + 1
2k

P(k + 1)

LHS of P(k + 1)

=

(
1 −

1
22

)
· · ·

(
1 −

1
k2

) (
1 −

1
(k + 1)2

)
=

k + 1
2k

(
1 −

1
(k + 1)2

)
(by (1))

=
k + 1

2k

(
(k + 1)2

(k + 1)2 −
1

(k + 1)2

)
=

k + 1
2k

(
(k + 1)2 − 1

(k + 1)2

)
=

(k + 1)(k2 + 2k)
2k(k + 1)2

=
k(k + 1)(k + 2)

2k(k + 1)2

=
(k + 2)

2(k + 1)

=
(k + 1) + 1

2(k + 1)

=RHS of P(k + 1)
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

2 a P(n)

11n − 1 is divisible by 10

P(1)

If n = 1 then

111 − 1 = 11 − 1 = 10
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is divisible by 10. Therefore P(1) is
true.

P(k)

Assume that P(k) is true so that

11k − 1 = 10m (1)

for some k ∈ Z.

P(k + 1)

11k+1 − 1 = 11 × 11k − 1

= 11 × (10m + 1) − 1 (by (1))

= 110m + 11 − 1

= 110m + 10

= 10(11m + 1)
is divisible by 10. Therefore P(k + 1)
is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

b P(n)

32n + 7 is divisible by 8

P(1)

If n = 1 then

32×1 + 7 = 9 + 7 = 16 = 2 × 8

is divisible by 8. Therefore P(1) is
true.

P(k)

Assume that P(k) is true so that

32k + 7 = 8m (1)

for some k ∈ Z.

P(k + 1)

32(k+1) + 7 = 32k+2 + 7

= 32k × 32 + 7

= (8m − 7) × 9 + 7 (by (1))

= 72m − 63 + 7

= 72m − 56

= 8(9m − 7)
is divisible by 8. Therefore P(k + 1)
is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

c P(n)

7n − 3n is divisible by 4

P(1)

If n = 1 then

71 − 31 = 7 − 3 = 4

is divisible by 4. Therefore P(1) is
true.

P(k)

Assume that P(k) is true so that

7k − 3k = 4m (1)

for some m ∈ Z.

P(k + 1)

7k+1 − 3k+1

=7 × 7k − 3k+1

=7 × (4m + 3k) − 3 × 3k (by (1))

=28m + 7 × 3k − 3 × 3k

=28m + 4 × 3k

=4(7m + 3k)
is divisible by 4. Therefore P(k + 1)
is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.
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d P(n)

5n + 6 × 7n + 1 is divisible by 4

P(1)

If n = 1 then

51 + 6 × 71 + 1 = 48 = 4 × 12

is divisible by 4. Therefore P(1) is
true.

P(k)

Assume that P(k) is true so that

5k + 6 × 7k + 1 = 4m (1)

for some k ∈ Z.

P(k + 1)

5k+1 + 6 × 7k+1 + 1

=5 × 5k + 6 × 7 × 7k + 1

=5 × (4m − 6 × 7k − 1) + 42 × 7k+1

=20m − 30 × 7k − 5 + 42 × 7k + 1

=20m + 12 × 7k − 4

=4(5m + 3 × 7k − 1)
is divisible by 4. Therefore P(k + 1)
is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

3 a P(n)

4n > 10 × 2n where n ≥ 4

P(4)

If n = 4 then

LHS = 44 = 256 and RHS = 10×24 = 160.

Since LHS > RHS, P(4) is true.

P(k)

Assume that P(k) is true so that

4k > 10 × 2k where k ≥ 4. (1)

P(k + 1)

We have to show that

4k+1 > 10 × 2k+1.

LHS of P(k + 1) = 4k+1

= 4 × 4k

> 4 × 10 × 2k (by (1))

= 40 × 2k (as 10 > 2)

= 20 × 2k+1

> 10 × 2k+1

= RHS of P(k + 1)
Therefore P(k + 1) is true.

Since P(5) is true and P(k + 1) is true
whenever P(k) is true, P(n) is true for
all integers n ≥ 4 by the principle of
mathematical induction.

b P(n)

3n > 5 × 2n where n ≥ 5

P(5)

If n = 5 then

LHS = 35 = 243 and RHS = 5×25 = 160.

Since LHS > RHS, P(5) is true.

P(k)

Assume that P(k) is true so that

3k > 5 × 2k where k ≥ 5. (1)

P(k + 1)

We have to show that

3k+1 > 5 × 2k+1.

LHS of P(k + 1) = 3k+1

= 3 × 3k

> 3 × 5 × 2k (by (1))

= 15 × 2k (as 10 > 2)

> 10 × 2k

= 5 × 2k+1

= RHS of P(k + 1)
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Therefore P(k + 1) is true.

Since P(5) is true and P(k + 1) is true
whenever P(k) is true, P(n) is true for
all integers n ≥ 5 by the principle of
mathematical induction.

c P(n)

2n > 2n where n ≥ 3

P(3)

If n = 3 then

LHS = 23 = 8 and RHS = 2 × 3 = 6.

Since LHS > RHS, P(3) is true.

P(k)

Assume that P(k) is true so that

2k > 2k where k ≥ 3. (1)

P(k + 1)

We have to show that

2k+1 > 2(k + 1).

LHS of P(k + 1) = 2k+1

= 2 × 2k

> 2 × 2k (by (1))

= 4k

= 2k + 2k

≥ 2k + 2 (as 2k ≥ 2)

= 2(k + 1)

= RHS of P(k + 1)
Therefore P(k + 1) is true.

Therefore P(n) is true for all
integers n ≥ 3 by the principle of
mathematical induction.

d P(n)

n! > 2n where n ≥ 4

P(4)

If n = 4 then

LHS = 4! = 24 and RHS = 24 = 16.

Since LHS > RHS, P(4) is true.

P(k)

Assume that P(k) is true so that

k! > 2k where k ≥ 4. (1)

P(k + 1)

We have to show that

(k + 1)! > 2k+1.

LHS of P(k + 1) = (k + 1)!

= (k + 1)k!

> (k + 1) × 2k (by (1))

> 2 × 2k (as k + 1 > 2)

= 2k+1

= RHS of P(k + 1)
Therefore P(k + 1) is true.

Therefore P(n) is true for all
integers n ≥ 4 by the principle of
mathematical induction.

4 a P(n)

an = 2n + 1

P(1)

If n = 1 then

LHS = a1 = 3 and RHS = 21 + 1 = 3.

Since LHS = RHS, P(1) is true.

P(k)

Assume that P(k) is true so that

ak = 2k + 1. (1)

P(k + 1)

We have to show that

ak+1 = 2k+1 + 1.
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LHS of P(k + 1) = ak+1

= 2ak − 1 (by definition)

= 2(2k + 1) − 1 (by (1))

= 2k+1 + 2 − 1

= 2k+1 + 1

= RHS of P(k + 1)
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

b P(n)

an = 5n − 1

P(1)

If n = 1 then

LHS = a1 = 4 and RHS = 51 − 1 = 4.

Since LHS = RHS, P(1) is true.

P(k)

Assume that P(k) is true so that

ak = 5k − 4. (1)

P(k + 1)

We have to show that

ak+1 = 5k+1 − 4.

LHS = ak+1

= 5ak + 4 (by definition)

= 5(5k − 1) + 4 (by (1))

= 5k+1 − 5 + 4

= 5k+1 − 1

= RHS
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

c P(n)

an = 2n + n

P(1)

If n = 1 then

LHS = a1 = 3 and RHS = 21 + 1 = 3.

Since LHS = RHS, P(1) is true.

P(k)

Assume that P(k) is true so that

ak = 2k + k. (1)

P(k + 1)

We have to show that

ak+1 = 2k+1 + k + 1.

LHS of P(k + 1) = ak+1

= 2ak − k + 1 (by definition)

= 2(2k + k) − k + 1 (by (1))

= 2k+1 + 2k − k + 1

= 2k+1 + k + 1

= RHS of P(k + 1)
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

5 P(n)

3n is odd where n ∈ N

P(1)

If n = 1 then clearly

31 = 3

is odd. Therefore, P(1) is true.

P(k)

Assume that P(k) is true so that

3k = 2m + 1 (1)

for some m ∈ Z.

P(k + 1)
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3k+1 = 3 × 3k

= 3 × (2m + 1) (by (1))

= 6m + 3

= 6m + 2 + 1

= 2(3m + 1) + 1
is odd, so that P(k + 1) is true.

Therefore P(n) is true for all n ∈ N by
the principle of mathematical induction.

6 a P(n)

n2 − n is even, where n ∈ N.

P(1)

If n = 1 then

12 − ×1 = 0

is even. Therefore, P(1) is true.

P(k)

Assume that P(k) is true so that k2 − k
is even. Therefore,

k2 − k = 2m (1)

for some m ∈ Z.

P(k + 1)

(k + 1)2 − (k + 1)

=k2 + 2k + 1 − k − 1

=k2 + k

=(k2 − k) + 2k

=2m + 2k (by (1))

=2(m + k)
Since this is even, P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

b Factorising the expression gives

n2 − n = n(n − 1).

As this is the product of two consec-
utive numbers, one of them must be
even, so that the product will also be
even.

7 a P(n)

n3 − n is divisible by 3, where n ∈ N.

P(1)

If n = 1 then

13 − 1 = 0

is divisible by 3. Therefore, P(1) is
true.

P(k)

Assume that P(k) is true so that k3 − k
is divisible by 3. Therefore,

k3 − k = 3m (1)

for some m ∈ Z.

P(k + 1)

We have to show that (k + 1)3 − (k + 1)
is divisible by 3.

(k + 1)3 − (k + 1)

=k3 + 3k2 + 3k + 1 − k − 1

=k3 − k + 3k2 + 3k

=(k3 − k) + 3k2 + 3k

=3m + 3k2 + 3k (by (1))

=3(m + k2 + k)
Since this is divisible by 3, P(k + 1) is
true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

b Factorising the expression gives

n3 + n = n(n2 − 1) = n(n − 1)(n + 1).

As this is the product of three
consecutive numbers, one of them
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must be divisible by 3, so that the
product will also be divisible by 3.

8 a
n 1 2 3 4 5
an 9 99 999 9999 99999

b We claim that an = 10n − 1.

c P(n)

an = 10n − 1

P(1)

If n = 1, then

LHS = a1 = 9 and RHS = 101−1 = 9.

Since LHS = RHS, P(1) is true.

P(k)

Assume that P(k) is true so that

ak = 10k − 1. (1)

P(k + 1)

We have to show that

ak+1 = 10k+1 − 1.

LHS = ak+1

= 10ak + 9 (by definition)

= 10(10k − 1) + 9 (by (1))

= 10k+1 − 10 + 9

= 10k+1 − 1

= RHS
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

9 a
n 1 2 3 4 5 6 7 8 9 10
fn 1 1 2 3 5 8 13 21 34 55

b P(n)

f1 + f2 + · · · + fn = fn+2 − 1

P(1)

If n = 1 then

LHS = f1 = 1

and

RHS = f3 − 1 = 2 − 1 = 1.

Since LHS = RHS, P(1) is true.

P(k)

Assume that P(k) is true so that

f1 + f2 + · · · + fk = fk+2 − 1. (1)

P(k + 1)

LHS of P(k + 1) = f1 + f2 + · · · + fk + fk+1

= fk+2 − 1 + fk+1 (by (1))

= fk+1 + fk+2 − 1

= fk+3 − 1 (by definition)

= f(k+1)+2 − 1

= RHS of P(k + 1)
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

c f1 = 1
f1 + f3 = 1 + 2 = 3
f1 + f3 + f5 = 3 + 5 = 8
f1 + f3 + f5 + f7 = 8 + 13 = 21

d From the pattern observed above, we
claim that

f1 + f3 + ... + f2n−1 = f2n.

e P(n)

f1 + f3 + · · · + f2n−1 = f2n

P(1)

If n = 1 then

LHS = f1 = 1
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and

RHS = f2 − 1 = 2 − 1 = 1.

Since LHS = RHS, P(1) is true.

P(k)

Assume that P(k) is true so that

f1 + f3 + · · · + f2k−1 = f2k. (1)

P(k + 1)

LHS = f1 + f3 + · · · + f2k−1 + f2k+1

= f2k + f2k+1 (by (1))

= f2k+2 (by definition)

= f2(k+1)

= RHS
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

f P(n)

The Fibonacci number f3n is even.

P(1)

If n = 1 then

f3 = 2

is even, therefore P(1) is true.

P(k)

Assume that P(k) is true so that f3k is
even. That is,

f3k = 2m (1)

for some m ∈ Z.

P(k + 1)

f3(k+1) = f3k+3

= f3k+2 + f3k+1 (by definition)

= f3k+1 + f3k + f3k+1

= 2 f3k+1 + f3k

= 2 f3k+1 + 2m (by (1))

= 2( f3k+1 + m)
Since this is even, P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

10 P(n)

Since we’re only interested in odd
numbers our proposition is:
42n−1 + 52n−1 is divisible by 9, where
n ∈ N.

P(1)

If n = 1 then

41 + 51 = 9

is divisible by 9. Therefore P(1) is true.

P(k)

Assume that P(k) is true so that

42k−1 + 52k−1 = 9m (1)

for some k ∈ Z.

P(k + 1)

The next odd number will be 2k + 1.
Therefore, we have to prove that

42k+1 + 52k+1

is divisible by 9.
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42k+1 + 52k+1

=42 × 42k−1 + 52 × 52k−1

=16 × (9m − 52k−1) + 25 × 52k−1 (by (1))

=144m − 16 × 52k−1 + 25 × 52k−1

=144m + 9 × 52k−1

=9(16 + 52k−1)
Since this is divisible by 9, we’ve shown
that P(k + 1) is true.

Therefore P(n) is true for all n ∈ N by
the principle of mathematical induction.

11 P(n)

A set of numbers S with n numbers has
a largest element.

P(1)

If n = 1, then set S has just one element.
This single element is clearly the largest
element in the set.

P(k)

Assume that P(k) is true. This means
that a set of numbers S with k numbers
has a largest element.

P(k + 1)

Suppose set S has k + 1 numbers.
Remove one of the elements, say x, so
that we now have a set with k numbers.
The reduced set has a largest element,
y. Put x back in set S , so that its largest
element will be the larger of x and y.
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N by
the principle of mathematical induction.

12 P(n)

It is possible to walk around a circle
whose circumference includes n friends

and n enemies (in any order) without
going into debt.

P(1)

If n = 1, there is one friend and one
enemy on the circumference of a circle.
Start your journey at the friend, receive
$1, then walk around to the enemy and
lose $1. At no point will you be in debt,
so P(1) is true.

P(k)

Assume that P(k) is true. This means
that it is possible to walk around a circle
with k friends and k enemies (in any
order) without going into debt, provided
you start at the correct point.

P(k + 1)

Suppose there are k + 1 friends and k + 1
enemies located on the circumference of
the circle, in any order. Select a friend
whose next neighbour is an enemy
(going clockwise), and remove these
two people. As there are now k friends
and k enemies, it is possible to walk
around the circle without going into
debt, provided you start at the correct
point. Now reintroduce the two people,
and start walking from the same point.
For every part of the journey you’ll have
the same amount of money as before
except when you meet the added friend,
who gives you $1, which is immediately
lost to the added enemy.

Therefore P(n) is true for all n ∈ N by
the principle of mathematical induction.

13 P(n)

Every integer j such that 2 ≤ j ≤ n is
divisible by some prime.
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P(2)

If n = 2, then j = 2 is clearly divisible
by a prime, namely itself. Therefore
P(2) is true.

P(k)

Assume that P(k) is true. Therefore,
every integer j such that 2 ≤ j ≤ k is
divisible by some prime.
P(k + 1)

We need to show that integer j such
that 2 ≤ j ≤ k + 1 is divisible by some
prime. By the induction assumption, we
already know that every j with 2 ≤ j ≤ k
is divisible by some prime. We need
only prove that k + 1 is divisible by a
prime. If k + 1 is a prime number, then
we are finished. Otherwise we can find
integers a and b such that k + 1 = ab
and 2 ≤ a ≤ k and 2 ≤ b ≤ k. By the
induction assumption, the number a
will be divisible by some prime number.
Therefore k + 1 is divisible by some
prime number.

Therefore P(n) is true for all n ∈ N by
the principle of mathematical induction.

14 If such a colouring of the regions is
possible we will call it a satisfactory
colouring.

P(n)

If n lines are drawn then the resulting
regions have a satisfactory colouring.

P(1)

If n = 1, then there is just one line.
We colour one side black and one side
white. This is a satisfactory colouring.
Therefore P(1) is true.

P(k)

Assume that P(k) is true. This means
that we can obtain a satisfactory
colouring if there are k lines drawn.
P(k + 1)

Now suppose that there are k + 1 lines
drawn. Select one of the lines, and
remove it. There are now k lines, and
the resulting regions have a satisfactory
colouring since we assumed P(k) is true.
Now add the removed line. This will
divide some regions into into two new
regions with the same colour, so this is
not a satisfactory colouring.

However, if we switch each colour
on one side of the line we obtain a
satisfactory colouring.

This is because inverting a satisfactory
colouring will always give a satisfactory
colouring, and regions separated the new
line will not have the same colour.

Therefore P(n) is true for all n ∈ N by
the principle of mathematical induction.
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Solutions to short-answer questions

1 a Let the 3 consecutive integers be
n, n + 1 and n + 2. Then,

n + (n + 1) + (n + 2) = 3n + 3

= 3(n + 1)

is divisible by 3.

b This statement is not true. For
example, 1 + 2 + 3 + 4 = 10 is not
divisible by 4

2 (Method 1) If n is even then n = 2k, for
some k ∈ Z. Therefore,

n2 − 3n + 1 = (2k)2 − 2(2k) + 1

= 4k2 − 4k + 1

= 2(2k2 − 2k) + 1

is odd.
(Method 2) If n is even then n2 − 3n + 1
is of the form

even − even + odd = odd.

3 a (Contrapositive) If n is not even, then
n3 is not even. (Alternative) If n is
odd, then n3 is odd.

b If n is odd then n = 2k + 1, for some
k ∈ Z. Therefore,

n3 = (2k + 1)3

= 8k3 + 12k2 + 6k + 1

= 2(4k3 + 6k2 + 3k) + 1

is odd.

c This will be a proof by contradic-
tion. Suppose 3√6 is rational so

that 3√6 =
p
q

where p, q ∈ Z. We

can assume that p and q have no
common factors (or else they could
be cancelled). Then,

p3 = 6q3 (1)

⇒ p3 is divisible by 2

⇒ p is divisible by 2

⇒ p = 2k for some k ∈ N

⇒ (2k)3 = 6q3(substitituting into (1))

⇒ 8k3 = 6q3

⇒ 4k2 = 3q2

⇒ q2 is divisible by 2

⇒ q is divisible by 2.

So p and q are both divisible by 2,
which contradicts the fact that they
have no factors in common.

4 a Suppose n is the first of three
consecutive numbers. If n is divisible
by 3 then there is nothing to prove.
Otherwise, it is of the form n = 3k + 1
or n = 3k + 2. In the first case,

n = 3k + 1

n + 1 = 3k + 2

n + 2 = 3k + 3 = 3(k + 1)

so that the third number is divisible
by 3. In the second case,

n = 3k + 2

n + 1 = 3k + 3 = 3(k + 1)

n + 2 = 3k + 4

so that the second number is divisible
by 3.
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b The expression can be readily
factorised so that

n3 + 3n2 + 2n = n(n2 + 3n + 2)

= n(n + 1)(n + 2)

is the product of 3 consecutive
integers. As one of these integers
must be divisible by 3, the product
must also be divisible by 3.

5 a if m and n are divisible by d then
m = pd and n = qd for some p, q ∈ Z.
Therefore,

m − n = pd − qd

= d(p − q)

is divisible by d.

b Take any two consecutive numbers
n and n + 1. If d divides n and n + 1
then d must divide (n + 1) − n = 1.
As the only integer that divides 1 is 1,
the highest common factor must be 1,
as required.

c We know that any factor of 1002 and
999 must also divide 1002 − 999 = 3.
As the only factors of 3 are 1 and 3,
the highest common factor must be 3.

6 a If x = 9 and y = 16 then the left hand
side equals

√
9 + 16 =

√
25 = 5

while the right hand side equals

√
9 +
√

16 = 3 + 4 = 7.

b (⇒)

[t]
√

x + y =
√

x +
√

y

⇒ x + y =
(√

x +
√

y
)2

⇒ x + y = x +
√

xy + y

⇒ 0 = sqrtxy

⇒ xy = 0

⇒ x = 0 or y = 0

(⇐) Suppose that x = 0 or y = 0. We
can assume that x = 0. Then

√
x + y =

√
y + 0

=
√

y

=
√

y +
√

0

=
√

y +
√

x,

as required.

7 (Case 1) If n is even then the expression
is of the form

even + even + even = even.

(Case 1) If n is odd then the expression
is of the form

odd + odd + even = even.

8 a If a = b = c = d = 1 then the left
hand side equals

1
1

+
1
1

= 2

while the right hand side equals

1 + 1
1 + 1

= 1.

b first note that if
c
d
>

a
b

then bc > ad.
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Therefore,

a + c
b + d

−
a
b

=
b(a + c)
b(b + d)

−
a(b + d)
b(b + d)

=
b(a + c) − a(b + d)

b(b + d)

=
ab + bc − ab − ad

b(b + d)

=
bc − ad
b(b + d)

>0
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since bc > ad. This implies that
a + c
b + d

>
a
b
.

Similarly, we can show that
a + c
b + d

<
c
d
.

9 a P(n)

6n + 4 is divisible by 10

P(1)

If n = 1 then

61 + 4 = 10

is divisible by 10. Therefore P(1) is
true.

P(k)

Assume that P(k) is true so that

6k + 4 = 10m (1)

for some m ∈ Z.

P(k + 1)

6k+1 + 4 = 6 × 6k + 4

= 6 × (10m − 4) + 4 (by (1))

= 60m − 24 + 4

= 60m − 20 × 3k

= 10(6m − 2)
is divisible by 10. Therefore P(k + 1)
is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.

b P(n)

12 + 32 + · · · + (2n − 1)2 =

n(2n − 1)(2n + 1)
3

P(1)

If n = 1 then LHS= 12 = 1and

RHS =
1(2 × 1 − 1)(2 × 1 + 1)

3
= 1.

Therefore P(1) is true.

P(k)

Assume that P(k) is true so that

12 +32 + · · ·+ (2k−1)2 =
k(2k − 1)(2k + 1)

3
. (1)

P(k + 1)

LHS of P(k + 1)

=12 + 32 + · · · + (2k − 1)2 + (2k + 1)2

=
k(2k − 1)(2k + 1)

3
+ (2k + 1)2 (by (1))

=
k(2k − 1)(2k + 1)

3
+

3(2k + 1)2

3

=
k(2k − 1)(2k + 1) + 3(2k + 1)2

3

=
(2k + 1)(k(2k − 1) + 3(2k + 1))

3

=
(2k + 1)(2k2 − k + 6k + 3)

3

=
(2k + 1)(2k + 3)(k + 1)

3

=
(k + 1)(2k + 1)(2k + 3)

3

=
(k + 1)(2(k + 1) − 1)(2(k + 1) + 1)

3
=RHS of P(k + 1)
Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N
by the principle of mathematical
induction.
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Solutions to multiple-choice questions

1 E The expression m − 3n is of the form

even − odd = odd.

2 E If m is divisible by 6 and n is
divisible by 15 then m = 6p and
n = 15q for p, q ∈ Z. Therefore,

m × n = 90pq

m + n = 6p + 15q = 3(2p + 5q)

From these two expressions, it
should be clear that A,B,C and D
are true, while E might be false. For
example, if m = 6 and n = 15 then
m + n = 21 is not divisible by 15.

3 C We obtain the contrapositive by
switching P and Q and negating
both. Therefore, the contrapositive
will be

not Q⇒ not P

.

4 B We obtain the converse by switching
P and Q. Therefore, the converse
will be

Q⇒ P

.

5 C If m + n = mn then

n = mn − m

n = m(n − 1)

This means that n is divisible by
n − 1, which is only possible if n = 2
or n = 0. If n = 0, then m = 0. If
n = 2, then m = 2. Therefore there
are only two solutions, (0, 0) and
(2, 2).

6 D The only statement that is true
for all real numbers a, b and
c is D. Counterexamples can
be found for each of the other
expressions, as shown below.

A
1
3
<

1
2

B
1
2
>

1
−1

C 3 × −1 < 2 × −1

E 12 < (−2)2

7 D As n is the product of 3 consecutive
integers, one of which will be
divisible by 3 and one of which
will be divisible by 2. The product
will be then be divisible by 1, 2, 3
and 6. On the other hand, it won’t
necessarily be divisible by 5 since
2 × 3 × 4 is not divisible by 5.

8 C Each of the statements is true except
the third. In this instance, 1 + 3 is
even, although 1 and 3 are not even.
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Solutions to extended-response questions

1 a The number of dots can be calculated two ways, either by addition,

(1 + 2 + 3 + 4) + (1 + 2 + 3 + 4)

or by multiplication,
4 × 5.

Equating these two expressions gives,

(1 + 2 + 3 + 4) + (1 + 2 + 3 + 4) = 4 × 5

2(1 + 2 + 3 + 4) = 4 × 5

1 + 2 + 3 + 4 =
4 × 5

2
The argument obviously generalises to more dots, giving equation (1).

b We have,

1 + 2 · · · + 99 =
99 × 100

2
= 99 × 50,

which is divisible by 99.

c Suppose that m is the first number, so that the n connective numbers are

m,m + 1, . . . ,m + n − 1.

Then,

m + (m + 1) + (m + 2) + · · · + (m + n − 1)

= n × m + (1 + 2 + · · · (n − 1))

= nm +
(n − 1)n

2

= n
(
m +

n − 1
2

)
Since n is odd, n − 1 is even. This means that

n − 1
2

is an integer. Therefore, the term
in brackets is an integer, which means the expression is divisible by n.

d Since
1 + 2 + · · · + n =

n(n + 1)
2
,

we need to prove the following statement:
P(n)

13 + 23 + · · · + n3 =
n2(n + 1)2

4
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P(1)

If n = 1 then
LHS = 13 = 1

and

RHS =
12(1 + 1)2

4
= 1.

Therefore P(1) is true.

P(k)

Assume that P(k) is true so that

13 + 23 + · · · + k3 =
k2(k + 1)2

4
. (1)

P(k + 1)

LHS of P(k + 1)

=13 + 23 + · · · + k3 + (k + 1)3

=
k2(k + 1)2

4
+ (k + 1)3 (by (1))

=
k2(k + 1)2

4
+

4(k + 1)3

4

=
k2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2(k2 + 4(k + 1))

4

=
(k + 1)2(k2 + 4k + 4)

4

=
(k + 1)2(k + 2)2

4

=
(k + 1)2((k + 1) + 1)2

4
=RHS of P(k + 1)

Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N by the principle of mathematical induction.

2 a The first number is divisible by 2, the second by 3, the third by 4 and so on. As each
number has a factor greater than 1, each is a composite number. Therefore this is a
sequence of 9 consecutive composite numbers.
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b We consider the this sequence of 10 consecutive numbers,

11! + 2, 11! + 3, . . . , 11! + 11.

The first number is divisible by 2, the second by 3 and so on. Therefore as each
number has a factor greater than 1, each is a composite number.

3 a Since (a, b, c) is a Pythagorean triple, we know that a2 + b2 = c2. Then (na, nb, nc) is
also a Pythagorean triple since,

(na)2 + (nb)2 = n2a2 + n2b2

= n2(a2 + b2)

= n2(c2)

= (nc)2,

as required.

b Suppose that (n, n + 1, n + 2) is a Pythagorean triple. Then

n2 + (n + 1)2 = (n + 2)2

n2 + n2 + 2n + 1 = n2 + 4n + 4

n2 − 2n − 3 = 0

(n − 3)(n + 1) = 0

n = 3,−1.

However, since n > 0, we obtain only one solution, n = 3, which corresponds to the
famous (3, 4, 5) triangle.

c Suppose some triple (a, b, c) contained the number 1. Then clearly, 1 will be the
smallest number. Therefore, we can suppose that

12 + b2 = c2

c2 − b2 = 1

(c − b)(c + b) = 1

Since the only divisor of 1 is 1, we must have

c + b = 1

c − b = 1

⇒ b = 0 and c = 1.

This is a contradiction, since b must be a positive integer. Now suppose some triple
(a, b, c) contained the number 2. Then 2 will be smallest number. Therefore, we can
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suppose that

22 + b2 = c2

c2 − b2 = 4

(c − b)(c + b) = 4

Since the only divisors of 4 are 1, 2 and 4, we must have

c + b = 4

c − b = 1

⇒ b =
3
2
, c =

5
2

or

c + b = 2

c − b = 2

⇒ b = 0, c = 2

In both instances, we have a contradiction since b must be a positive integer.

4 a (Case 1) If a = 3k + 1 then

a2 = (3k + 1)2

= 9k2 + 6k + 1

= 3(3k2 + 2k) + 1

leaves a remainder of 1 when divided by 3.
(Case 2) If a = 3k + 2 then

a2 = (3k + 2)2

= 9k2 + 12k + 4

= 9k2 + 12k + 3 + 1

= 3(3k2 + 4k + 1) + 1

also leaves a remainder of 1 when divided by 3.

b Suppose by way of contradiction that neither a nor b are divisible by 3. Then using
the previous question, each of a2 and b2 leave a remainder of 1 when divided by 3.
Therefore a2 = 3k + 1 and b2 = 3m + 1, for some k,m ∈ Z. Therefore,

c2 = a2 + b2

= 3k + 1 + 3m + 1

= 3(k + m) + 2.

This means that c2 leaves a remainder of 2 when divided by 3, which is not possible.
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5 a P(n)

n2 + n is divisible by 2, where n ∈ Z.

P(1)

If n = 1 then 12 + 1 = 2 is divisible by 2. Therefore P(1) is true.

P(k)

Assume that P(k) is true so that

k2 + k = 2m (1)

for some m ∈ Z.

P(k + 1)

Letting n = k + 1 we have,

(k + 1)2 + (k + 1)

=k2 + 2k + 1 + k + 1

=k2 + 3k + 2

=(k2 + k) + (2k + 2)

=2m + 2(k + 1) (by (1))

=2(m + k + 1)

is divisible by 2. Therefore P(k + 1) is true.

Therefore P(n) is true for all n ∈ N by the principle of mathematical induction.

b Since
n2 + n = n(n + 1)

is the product of two consecutive integers, one of them must be even. Therefore the
product will also be even.

c If n is odd, then n = 2k + 1. Therefore

n2 − 1 = (2k + 1)2 − 1

= 4k2 + 4k + 1 − 1

= 4k2 + 4k

= 4k(k + 1)

= 4 × 2k (since the product of consecutive integers is even)

= 8k

as required.

6 a If n is divisible by 8, then n = 8k for some k ∈ Z. Therefore

n2 = (8k)2 = 64k2 = 8(8k2)
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is divisible by 8.

b (Converse) If n2 is divisible by 8, then n is divisible by 8.

c The converse is not true. For example, 42 = 16 is divisible by 8 however 4 is not
divisible by 8.

7 a There are many possibilities. For example 3 + 97 = 100 and 5 + 97 = 102.

b Suppose 101 could be written as the sum of two prime numbers. Then one of these
primes must be 2, since all other pairs of primes have an even sum. Therefore
101 = 2 + 99, however 99 is not prime.

c There are many possibilities. For example, 7 + 11 + 83 = 101.

d Consider any odd integer n greater than 5. Then n − 3 will be an even number greater
than 2. If the Goldbach Conjecture is true, then n − 3 is the sum of two primes, say p
and q. Then n = 3 + p + q, as required.

8 a We have,
1

n − 1
−

1
n

=
n

n(n − 1)
−

n − 1
n(n − 1)

=
n − (n − 1)

n(n − 1)

=
n − n + 1
n(n − 1)

=
1

n(n − 1)
.

b Using the identity developed in the previous question, we have,
1

2 × 1
+

1
3 × 2

+ · · · +
1

n(n + 1)

=
1
1
−

1
2

+
1
2
−

1
3

+
1
3
−

1
4

+ · · · +
1

n − 2
−

1
n − 1

+
1

n − 1
−

1
n

=
1
1
−

1
n

=1 −
1
n

as required.

c True when n = 2 since
1

2 × 1
= 1 −

1
2

Assume true for n = k
1

2 × 1
+

1
3 × 2

+ · · · +
1

k(k + 1)
= 1 −

1
k
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For n = k + 1
1

2 × 1
+

1
3 × 2

+ · · · +
1

k(k − 1)
+

1
(k + 1)(k)

= 1 −
1
k

+
1

(k + 1)(k)

= 1 −
1

k + 1

d Since k2 > k(k − 1) for all k ∈ N,
1
12 +

1
22 +

1
32 · · · +

1
n2

=
1
12 +

(
1
22 +

1
32 · · · +

1
n2

)
<

1
12 +

(
1

2 × 1
+

1
3 × 2

· · · +
1

n(n − 1)

)
=

1
12 + 1 −

1
n

=2 −
1
n

<2,

as required.

9 a We have,
x + y

2
−
√

xy =
a2 + b2

2
−
√

a2b2

=
a2 + b2

2
− ab

=
a2 + b2

2
−

2ab
2

=
a2 − 2ab + b2

2

=
(a − b)2

2
≥ 0.

It is also worth noting that we get equality if and only if x = y.

b i Using the above inequality, we obtain,

a +
1
a
≥ 2

√
a ·

1
a

= 2
√

1

= 2.

as required.
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ii Using the above inequality three times, we obtain,

(a + b)(b + c)(c + a) ≥ 2
√

ab × 2
√

bc × 2
√

ca

= 8(
√

a)2(
√

b)2(
√

c)2

= 8abc,

as required.

iii This inequality is a little trickier. We have,

a2 + b2 + c2 =

(
a2

2
+

b2

2

)
+

(
b2

2
+

c2

2

)
+

(
a2

2
+

c2

2

)
=

a2 + b2

2
+

b2 + c2

2
+

a2 + c2

2

≥
√

a2b2 +
√

b2c2 +
√

a2c2

= ab + bc + ac,

as required.

c If a rectangle has length x and width y then its perimeter will be 2x + 2y. A square
with the same perimeter will have side length,

2x + 2y
4

=
x + y

2
.

Therefore,

A(square) =

( x + y
2

)2
≥ xy = A(rectangle).

10 We show that it is only possible for Kaye to be the liar.
case 1
Suppose Jaye is lying

⇒ Kaye is not lying
⇒ Elle is lying
⇒ There are two liars
⇒ This is impossible.

case 2
Suppose Kaye is lying

⇒ Jaye is not lying and Elle is not lying
⇒ Kaye is the only liar

case 3
Suppose Elle is lying

⇒ Mina is not lying
⇒ Karl is lying
⇒ There are two liars
⇒ This is impossible.
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11 First note that the four sentences can be recast as:

� Exactly three of these statements are true.

� Exactly two of these statements are true.

� Exactly one of these statements are true.

� None of these statements are true.

At most one of these statements can be true, or else we obtain a contradiction. If none
of the statements is true, then the last statement is true. This means that at least one
of the statements is true. This also gives a contradiction. Therefore, only one of the
statements is true, that is, the third statement.

12 a There is only one possibility,

1, 2, 4, 8 3, 5, 6, 7

b We know that we can split the numbers 1, 2, . . . , 8,

1, 2, 4, 8 3, 5, 6, 7

Deleting the largest number, 8, will give a splitting of 1, 2, . . . , 7.

1, 2, 4 3, 5, 6, 7

Continuing this process, deleting the 7, will be a splitting of the numbers 1, 2, . . . , 6,
and so on.

c We first note that if a set can be split then two numbers can’t appear in the same
group as their difference. To see this, if x and y and x − y all belong to the same
group then (x − y) + y = x. Let’s now try to split the numbers 1, 2, . . . , 9. Call the
two groups X and Y . We can assume that 1 ∈ X. We now consider four cases for the
groups containing elements 2 and 9.
(case 1) Suppose 2 ∈ X and 9 ∈ X

Reason X Y Reason
(assumed) 1
(assumed) 2
(assumed) 9

3 (1, 2 ∈ X)
7 (2, 9 ∈ X)

(3, 7 ∈ Y) 4
5 (1, 4 ∈ X)
6 (2, 4 ∈ X)

(5, 6 ∈ Y) 8
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This doesn’t work, since X is forced to contain the numbers 1, 8 and 9.
(case 2) Suppose 2 ∈ X and 9 ∈ Y

Reason X Y Reason
(assumed) 1
(assumed) 2

9 (assumed)
3 (1, 2 ∈ X)

(3, 9 ∈ Y) 6
4 (2, 6 ∈ X)
5 (1, 6 ∈ X)

This doesn’t work, since Y is forced to contain the numbers 4, 5 and 9.
(case 3) Suppose 2 ∈ Y and 9 ∈ X

Reason X Y Reason
(assumed) 1

2 (assumed)
(assumed) 9

8 (1, 9 ∈ X)
(2, 8 ∈ Y) 6

3 (6, 8 ∈ X)
(2, 8 ∈ Y) 5 (3, 8 ∈ X)

This doesn’t work, since X is forced to contain the numbers 1, 5 and 6.
(case 4) Suppose 2 ∈ Y and 9 ∈ Y

Reason X Y Reason
(assumed) 1

2 (assumed)
9 (assumed)

(2, 9 ∈ Y) 7
6 (1, 7 ∈ X)

(2, 8 ∈ Y) 4
3 (4, 7 ∈ X)

This doesn’t work, since Y is forced to contain the numbers 3, 6 and 9.

d If the numbers 1, 2, . . . , n could be split, where n ≥ 9, then we could successively
eliminate the largest term to obtain a splitting of the numbers 1, 2, . . . , 9. However,
we already know that this is impossible.

13 a A suitable tiling is shown below. There are many other possibilities.

b Tile E must go into a corner. This is because there are only two other tiles (A and
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B) that it can go next to. Tile F must also go into a corner. This is because there are
only two other tiles (B and C) that it can go next to.
(Case 1) Tile E and tile F are in different rows
Since tile B must go next to both tiles E and F, this is impossible.
(Case 2) Tile E and tile F are in the same row
Assume tile F is in the top left position.
Then tile E goes in the top right position.

Therefore tile B must go between them.

Tile C must then go beneath tile F and tile A must go beneath tile E. Consequently,
tile D must go beneath tile B. Therefore, there is only one valid orientation of tile D.

This fixes the orientation of tiles A and C.

Since tile F could have gone into any one of the four corners, there are only four
ways to tile the grid.
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